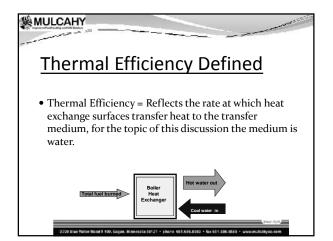


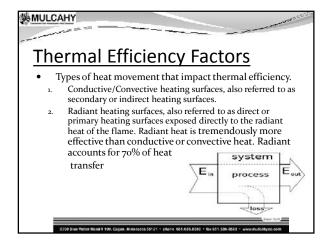
Topics Of Discussion During Today's Presentation

Understanding The Different Efficiency Testing Methods Differences Between Sensible and Latent Heat Understanding The Combustion Process and What It Means To Your Overall Efficiency Materials of Construction and How They Are Applied Into Boiler Design Condensate Removal Maintaining Various Types of Condensing Boilers Outdoor Reset Curves and Their Effects Piping Strategies To Insure Safe, Reliable and Efficient Qongation Of Your Venting Your Condensing Boiler

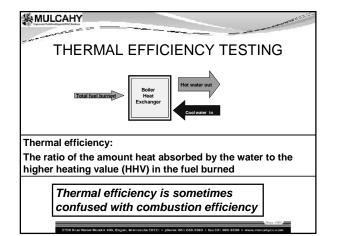
MULCAHY		
	oilers make all the sense in t	,
High Temp System		Low(er) Temp System
	Initial material cost	
	Material wear	
	Control and comfort	
\mathbf{r}	Boiler fuel efficiency	
-	Fuel costs	
\checkmark	Boiler emissions	
\checkmark	Environmental compliance	
	Service & Maintenance	
Ť	Negative The Positive	ve

MULCAHY Understanding Efficiency Types Combustion Efficiency (commonly used for commercial equipment testing) Thermal Efficiency (commonly used for commercial equipment testing)

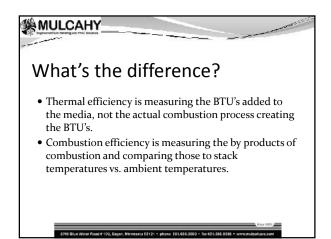

Se MULCAHY

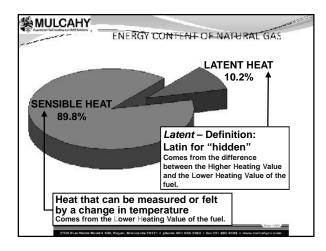

Combustion Efficiency Defined

- Combustion Efficiency = Calculated measurement of how well the heating equipment is converting a specific fuel into useable heat energy at *a specific period of time in the operation of a heating system*.
- Combustion test instruments evaluate these combustion gases.

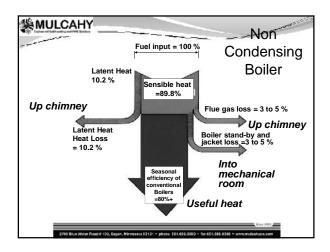


Combustion Efficiency Factors Combustion efficiencies assume complete fuel combustion and are based on three factors: The chemistry of the fuel and how much energy is chemically bound in the fuel. The net temperature of the stack gases or how much heat is not being used. The percentage of oxygen (O2) or carbon dioxide (CO2) by volume after the combustion process or how much O2 did the fuel completely burn.

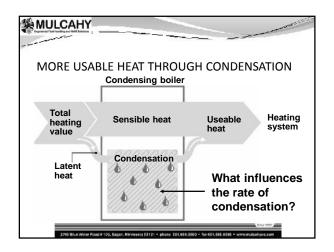


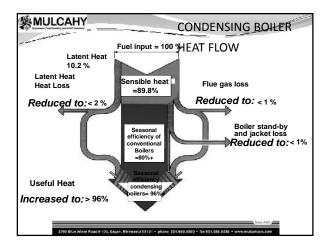


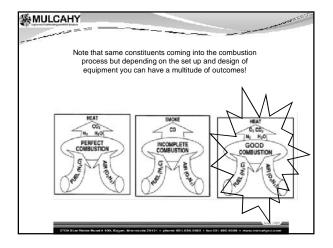
MULCAHY

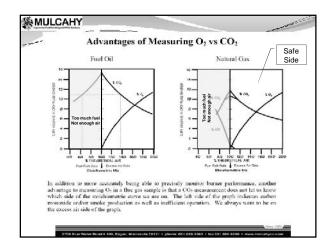

Which one is the most accurate?

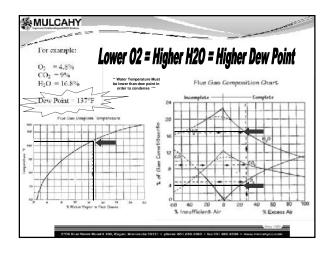
• Depends.....

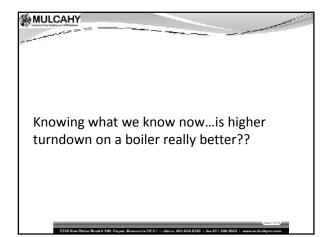

- Thermal efficiency is calculating energy that is actually transferred into the media, but it doesn't calculate or recognize where the heat source came from our how it was created.
- Combustion efficiency only measures the physics of combustion but doesn't recognize where the heat went other than it didn't go up the stack.

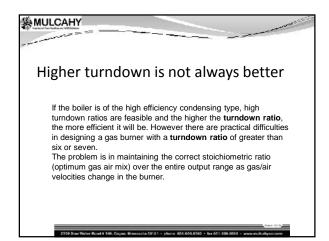


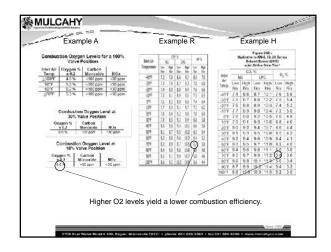


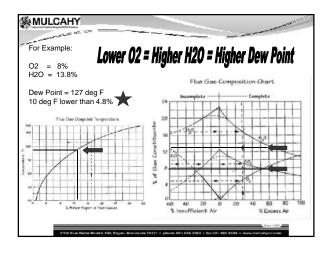






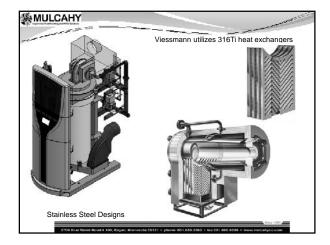

	ا عتريهم					200			-	-		-	-				-
Example A			Example R					Example H									
Combus	tion Oxy Valv	gen Level e Position	s for a 100%														
Temp	Cxygen 41%	% Carbo Monox ~100 p	Ide NOx om <30 pom	Belet. Ge Temperatum	240	() G B(4)	L) Tare	24	1.0	5		•	perothe Dok	erin Mit	- 208 - -1. 10.1 amer (2	1001	••
80'F	5.2 %	= 100 pt	m = 30 ppm	-40%	Ee 72	1k 7.8	Re Eá	1 <u>1</u> 12	100 111	70	Iniet		C0			0	56
≤70*F	5.3%	~180 p	pm 30 ppm	-104	情	14	ii.	÷.	71	4	Air		G		PG		
				-224	14	11	11	14	76	68	Terrp.	Fire	High First	Fin	High Fm	Low First	167
12	1993	12/22/02	200202	-025	25	£1	1.5	85	75	65	-4174	7.4	8.6	8.7	10.1	2.6	5.6
		on Oxygen Valve Poti		04F	7.6	£2	41	15	74	<u>6</u> 4	+3024	76	87	8.8	10.2	75	5.4
	atorn 15	Carbon	Lavra	- 125	22	Ð	\$1	\$2	12	- 62	+50.4	76	5.8	8.9	10.3	7.4	5.2
	0.2	Monoxide	NOx	32%	14	H	12	IJ.	N	60	-10.3	1.1	5.9	9.0	10.4	12	5.0
	10.55	~30 ppm	×3C parr	104	29	ŁS	<u>\$</u>].	19	61	58	0.1	78	0.0	9.2		7.0	41
				405	10	16	£4	312	66	55	10.1	7.9	9.1	9.3	106	BB	4.6
				89	11	U	15	312	61	54	50.1	8.0	8.2	9.4	10.7	5.6	4.4
Com	bustion	Covper Le	well at	601	112	1.1	46	:13	64	52	30%	81	9.3	9.5		6.5	43
	18% Val	ve Pasitio	n	70%	111	15	17	115	62	50	40.4	82	84	96		64	41
Oxygen	1 1 20	athen 1		M.A.	1u	15	1.1	114	44	48	50"F	8.3	9.5			5.2	40
	2 N.	moxida	NOs	105	115	11	15	117	51	45	60'F	84	9.6	9.8	11.1	58	3.0
8.0 %	6 4	50 dpm	<30 pom	1379				10		44	10'F	85	9.7	9.9			3.6
				1000	1.00	-	-	-	1	-		67	5.8		11.3	54	3.2
											20015	8.8			11.5		3.2
											100.4	0.9	110.0	10.3	1.9	23	- 5.0

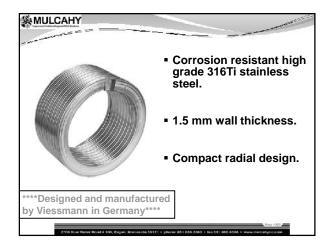



MULCAHY	
and a second	
What is	turndown?
The amount of	of times a fuel can be reduced or divided into the full rated input of the burner.
Examples:	
2 to 1 – 50% c	of full firing rate
3 to 1 - 33%	
5 to 1 – 20% c	of full fire
	ndown is a small percentage of firing rate. 20-1 adds 15% end (poor combustion)
	0% 20% 40% 60% 80% 100%
2730 Dise Water Roa	Source 190+ . #8 100: Cingan: Minewissola 551£1 + obona: 461.656.6580 + 5a+651.588.6568 + www.milliologico.com

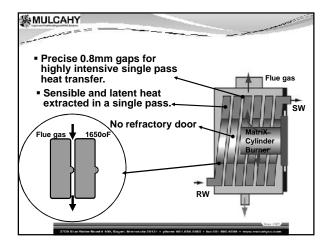

Not just one thing can make a successful, efficient, long lasting condensing boiler. A better combustion process yields lower O2 levels which in turn yields a cleaner burn and higher dew points The higher the dew point the more latent heat that be extracted in turn yielding higher efficiencies. The better the materials of construction the better the heat extraction resulting in higher thermal efficiencies.

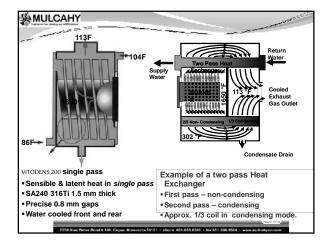
Conductivities	of Vario	us	- management of the second
(inc	Metal	Temperature * t * (°F)	Thermal <u>Conductivity</u> - k - (Brav(hr ⁰ F ft))
	Aluminum, pure	68 200	118
	structure pare	400	144
	Carbon Steel, max 1.5% C	68 752	21
		2192	17
	Copper, pure	68	(223)
(C.	coppetition.	1112	204
	Iron, puse	68	(42)
		572	32
		1832	20
	Stainless Steel	68	(7-26)
9			

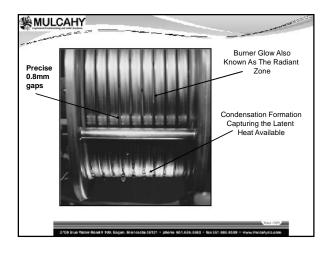




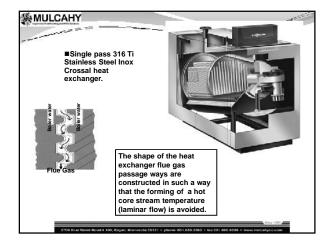
Viessmann RBI

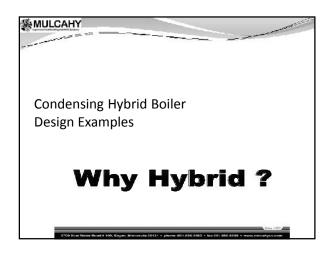

lf There All Made Of Stainless Steel They Must All Be The Same, Right ?

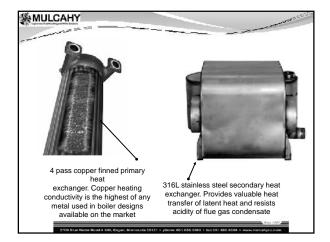


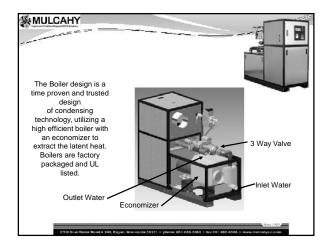


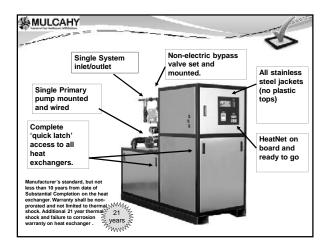


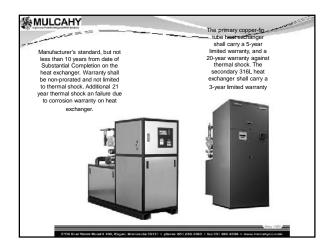


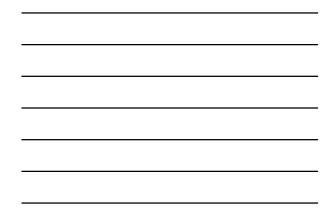


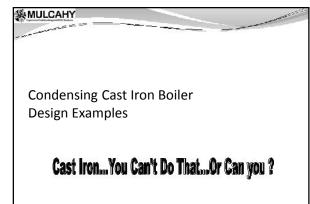


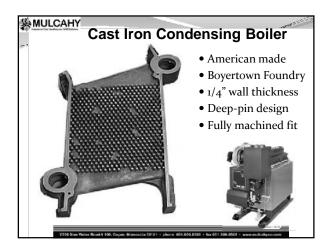


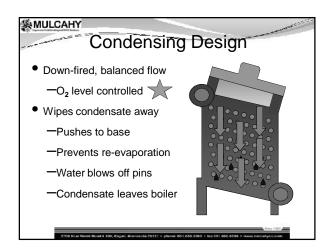


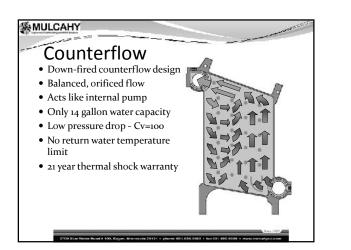

13

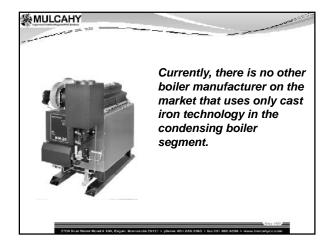


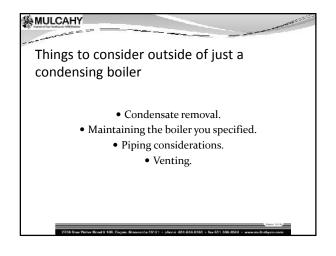


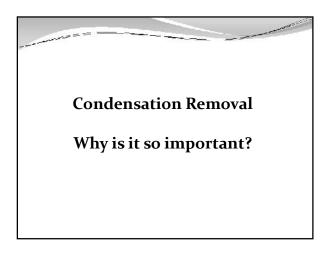


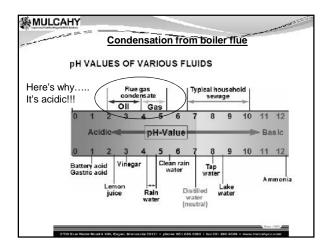


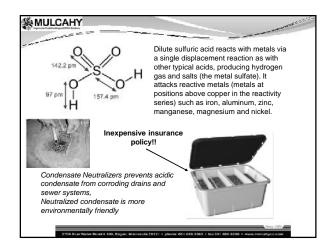


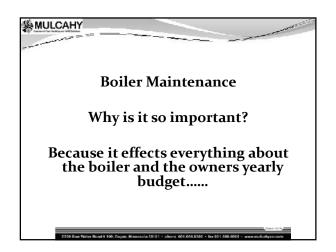

But I thought we can't condense on ferrous material?

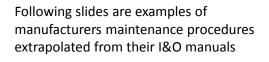

"The condensing portion of these boilers may require special material or operating techniques to resist the corrosive effects of the condensing flue gases. In the past, typical cast iron, carbon steel, and copper were not suitable materials for the condensing section of a boiler. Certain stainless steels and aluminum alloys were suitable. However, advances in design, controls and manufacturing have allowed materials such as cast iron to be used where they previously could not be, as with all products, consult the manufacturer for the proper application. Commercial boiler installations can be adapted to condensing operation by adding a condensing heat exchanger in the flue gas vent."


- 2012 ASHRAE HVAC Systems and Equipment Handbook

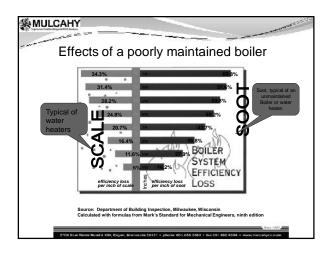




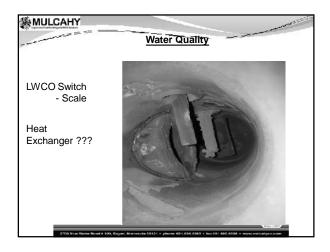




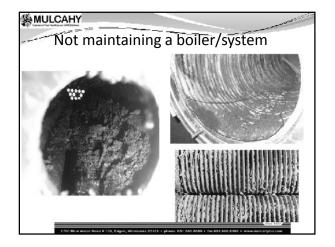
MULCAHY

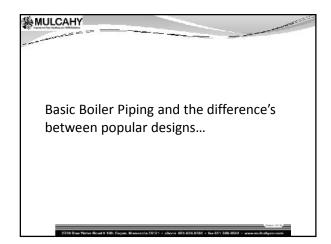

Maintenance Requirements Examples

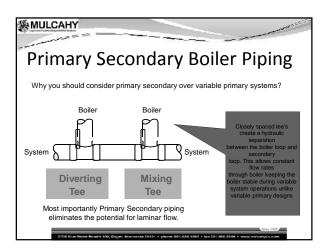
The boiler must be inspected at least once a year and before each heating season. Make sure that the burner and ignition components are free from dust, soot, dirt, corrosion or other deposits that would impair the boiler's performance. Visually inspect the burner through the site glass.

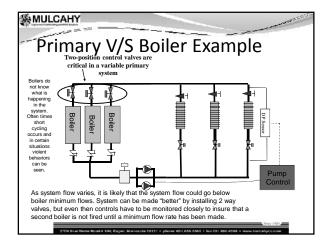

Aginto	nance	Rea	uiromo	onte E	vom
anne	nance	Ney	uneme		лап
n Analyzers are 8.000.00					
\$,000.00	Tabl	a 7-1 - Maint	enance Schedu	le	
PARAGRAPH	ITEM	6 Mos.	12 Mos.	24 Mos.	Labor
7.2	Igniter-Injector (58023)	*inspect	Inspect	Replace	15 min
7.3	Flame Detector	*inspect	inspect	Replace	15 mins
7.4	Combustion Calibration	*Check	Check		1 hr.
7.5	Testing of Safety Devices		See CSD-1 Chart in Appendix I		20 mini
7.6	Burner			Inspect	2 hrs.
7.7	Condensate Drain Trap	*Inspect	Inspect & Clean		30 mins
	after initial 6 month p	aniand a Rev last	in I start in		

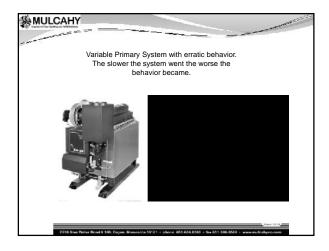
Main	tenance	manual	continues	tor	another	5	pages	

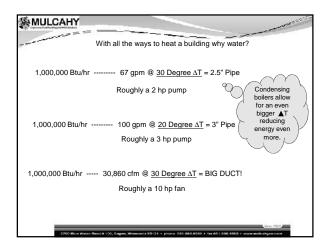

Reduce the Risk of Exposure	n for Refractory Ceramic Fibers (RCF) Preenutions and Recommended Personal Protective Equipment
Avoid contact with skin and eyes	 Wear long-sleeved clothing, gloves, and safety popples or plasses.
Would breathing in salica dust	Were a respinator with a N95-med filter efficiency or better ⁻¹ Use water to reduce automa dust levels when cleaning the combustion chamber. Do not dry sovep shifted dust. Prevent or use a voranum with a high efficiency filter.
Avoid transferring contamination	 When installing or removing RFCs, place the instead in a scalable plastic big. Remove comminant clothing after use. Store in scalable comminer until clemed. Wash commanimated infolding separately from other laundry.
first Aid Measures	H'arritoise persons office implementing from all measures consult a physiciae Skin - Weah with congrant water: Kyes - Do not rub ergor; flush with water immediately. Instantion - Breather in fresh sin: drink water, usezze or cough to clear intimed processor, wrys.
yeor been regulated without year and dispesal of RCPs. WARNING Petential C 1000°C) car Repeated in interv illness, or death Crystall iztriors International Agency	aid on CCOHS and OSMA requirements or the time this document was written. Consolit garding current requirements for sequences, personal protective spapment, handling, archnogen - Use of Refractory Covarie Fibers in high temperature applications (ab a test) in the formation of Crystalline Silica (cristobalit), a respirable silica d forme exposure to crystalline silica dust may result in chrone lung infections, and the silica is silica a (abstrat) occupional acciments by the following regular for Research on Chroce (IASC), Canadam Centre for Occupional Behitt net for All Administration (OSIA), and Ancienal Institute for Occupional Behitt net for All Administration (OSIA), and Ancienal Institute for Occupional Science)

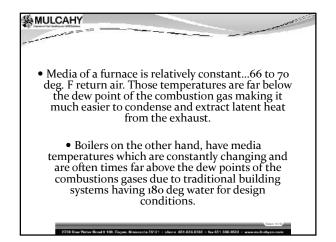


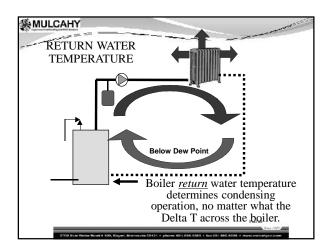


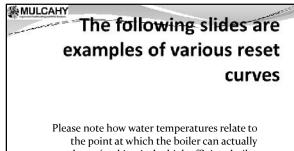




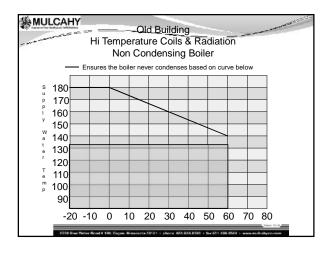


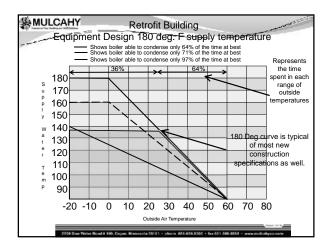


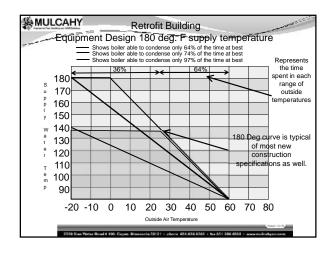




So how do we get boilers to condense if the design water temperatures are over the dew points???


- When designing new construction, select radiation that is designed to emit the BTU's you need at a lower temperature.
- ****In a retrofit application specify a steeper reset curve allowing for longer periods of time with water temperatures below the dew points of the combustion gases.
- Simply increase the delta T of your system




condense (making it the high efficient boiler you purchased)

