SESSION 1 – THE PAST: Verifying Computer Analysis Results with Hand Calculations

SAM RUBENZER, PE, SE

- Founded FORSE Consulting in 2010
- Assists structural engineers on a wide variety of designs with an assortment of structural engineering design software

FORSE

- Many years of experience as licensed engineers
- FORSE has worked hard to learn each of the software programs used by SEs and created many presentations comparing attributes of different software tools
- Worked as consultants with software companies teaching others about SE software

Abstract

- analysis and design.
- defined on models, and verifying the analysis results.
- have a good understanding apart from software to spot these errors.

• Structural Engineers are relying more and more on structural engineering software for

• Understanding the different options available for modeling is paramount in ensuring the best model is created to imitate reality and give engineers the best possible design.

• This presentation reviews various hand calculation methods for verifying the loads

Lastly, we will verify the design checks made for members within the model. It is easy to assume that all structural engineering software solves engineering problems correctly. Unfortunately, there can be errors from programming and user mistakes. Engineers must

A Word About Software

- Understanding the different options available for modeling is paramount Best model is created to imitate reality and give engineers the best possible
- Structural engineers rely on finite elements models for analysis and design • •
- design

Is Your Software Model a Good Representation of Reality?

Structural Engineering Software

- professional
- as long as you use the software as a tool, and don't become an "operator"
- Never let the software think for you, only let it think faster
- Never let the software decide for you. Period.

• Software is continuously changing our ability to do many things in our lives, personal and

• This is no different with structural engineering. Software will make you a better engineer

Structural Engineering Software

- Never assume the software is doing anything correctly
- Never assume the software is making the same decisions you would make
- Software programs are tools, you are the engineer, never forget that

Structural Engineering Software

- Never assume the software is correct, or as you would have done it "by hand"
- Examples
 - certain programs will distribute load one-way
 - regardless of the span aspect ratio, even 100:1
 - automatic features are by far the most dangerous
 - settings aren't apparent when using software, in the manual
 - **default settings** are dangerous
 - create a false sense of a "standard"

Structural Engineering Software: "Do You Agree with the Programmer?"

- Structural engineers also rely on:
 - Education, experience, and guidance from the code
 - Your good engineering judgment is still invaluable

When programmers develop software for us to use, they are relying on codes and their own judgment

- You will find that your judgment isn't always in agreement with another structural engineer's
 - Don't use a feature you don't agree with
 - Don't assume other users agree ...

...so it must be OK?

Need to Know What We Don't Know...

Stated Learning Objectives

- Verify loads applied to models
- Verify analysis results
- Verify design checks

IN ORDER TO VERIFY, YOU NEED TO KNOW WHAT THE PROGRAM IS DOING

Let's Start with Philosophy

preliminary questions"

- "Those that wish to succeed must ask the right

 - Aristotle

Verify Loads Applied to Models

- Manually determine loads on structure
- Approximate distribution
- Know software load generator capabilities •
- Review applied loads after load generator application

Verify Loads Applied to Models

Verify Loads Applied to Models

- Approximate distribution

Manually determine loads on structure

HAND CALCS or SPREADSHEETS

Verify Loads Applied to Models Approximate Load and Distribution

Verify Loads Applied to Models Approximate Load and Distribution

n	Length, I _u Determine the height of the drift		Resulting Snow Drift Loads		Note		
t	1.0 ft	h _{d-lee} =	1.66 ft	<controls< th=""><th>p_{snow drift} =</th><th>50.8 psf</th><th>* - W exceeds length of t</th></controls<>	p _{snow drift} =	50.8 psf	* - W exceeds length of t
							In a difference of a dimension of the

17/18	SHEET
	/
ot	
s 20nsf 1	
0 2000 J	
es	
-	
+ +	h _b
•	•
d direction)	
3	
-	
otes	
of the low roof,	snow drift

Verify Loads - Gravity Load Generators?

- Several programs distribute load without checking span
 - How far can load be distributed?
- Dead
 - referred to as super imposed dead load
- Live
 - Live load keyed to ASCE table based on floor usage
 - reducible of not reducible is not the software's decision to make
- Snow or Roof Live load
 - No automated snow drift generators or ponding load generators on the market

• Self weight based on members modeled - don't forget about the elements not modeled, often

Verify Loads - General

- when using a structural analysis and design software package, there is a tendency to assume that the program is correctly generating the loads
- software programmers are very good at interpreting and implementing the codes
 - can't automate every condition that exists in our complex architectural world
- to understand this completely as it pertains to your projects
 - best to know where software programmers get the loads for the load generators.
 - specifically, what sections of the code are used for load generators in common software packages.

Verify Loads - Questions

- When an engineer chooses to generate wind loads, what sections of the code are considered? For example:
 - How many directions is the load applied?
 - Can enclosed, partially enclosed, and open structures be considered?
- When generating seismic loads what code provisions are considered? For example:
 - Using approximate building period or calculated period?
 - Is accidental torsion checked and provisions applied?

Wind Based on ASCE 7

- ENVELOPE PROCEDURE
- DIRECTIONAL PROCEDURE
 - portions of this procedure are generally used by software to generate wind loads
- WIND TUNNEL PROCEDURE
- Versions
 - 7-02
 - 7-05
 - 7-10 (major change)
 - 7-16

Verify Loads - Quick Facts

- ASCE 7-10
 - pages dedicated to Wind
 - 130
 - pages used for most wind load generators
 - Estimate 10-20, varies depending on software
- means, what's included, and perhaps more importantly, what's excluded!

• so when a software indicates ASCE 7-10 is implemented, be sure you know what that

Software Options and Examples

Software Options and Examples

- Auto exposure edges?
 - Determined from defined deck/slab edges
 - Allow Modifications?
- User defined exposure areas?
 - Can user manually define wind exposure areas and distribution?
- Combine with user defined loads?
- Parapets?

- What do you do when the load generator is close, but needs supplemental loads to be added
 - Can supplemental loads be added to generated loads?

Wind	Auto exposure edges? Allow Modifications?	User defined exposure areas	Combine with user defined loads?	Parapets
RISA 3D	yes no		yes	
RSS (FRAME) RAM Elements	yes yes			yes
ETABS	yes yes	lateral walls	yes	yes
SCIA		load panels	yes	yes
TEKLA Structural Designer		wall panels	yes	yes
IES VisualAnalysis		areas	yes	yes

QA/QC for Loading

QA/QC

- Peer review of model is essential
- Loads in = Loads out
 - Does resulting base shear = applied lateral load?
- Wind Load Code Check:
 - If factored wind loads are applied per ASCE 7-10, confirm LRFD design is applied

Verify analysis results

- Start with simple models to approximate results
 - Simple micro models
 - Simple macro models
- Work in complex elements to overall model
- Verify final model matches behavior of simple model
- Understand software capability/limitations of analysis

Estimate Behavior Before Hitting Analyze

• Estimate load

- Determine Shear for group
- Determine corner up/down reactions as estimate

Estimate Behavior Before Hitting Analyze

- Simple to complex
 - Lose the ability to do this which we import complex models 1
 BIM models
- Counter intuitive behavior?
 - Real or not real???

What Happens at First Floor?

- Can load really reverse in towers?
 - created by rigid diaphragms
- More realistic with Semi-rigid
 - still need to check ability to get load out of wall groups, into diaphragm, then into new walls at foundation

Estimate Load Distribution

Before We Take on This...

Work on Understanding Individual Area

Work on Understanding Individual Area

PLAN
Use hand calcs to estimate

Indeterminate Structures

- Slope Deflection
- Moment Distribution

SECTION

11111		$\frac{kN/m}{1 + 1 + 1}$ $2I$ m		<i>I</i> — 4 m —	<i>C</i> 7777777 → ←	4 m -	
A M _{AB}		$-M_{BA}$	$B = M_{BC}$		(— <i>М</i> св —	С - <i>М</i> ср —	D M
	21/4	2/3	1/3	<i>I</i> /4	1/2	1/2	<i>I</i> /4
60 20	- 1/2	-60 <u>40</u> 17	$\frac{20}{-2.5}$	$\begin{array}{r} 1/2 \rightarrow \\ - 1/2 \\ 1/2 \rightarrow \end{array}$	$10 -5 - \frac{5}{0.4}$	-5	1/2 → -2.
80.8	← 1/2	-18.3	≈0 18.3	- 1/2	$-\frac{0.2}{5.2}$	<u>-0.2</u> 5.2	$1/2 \rightarrow \frac{-0}{-2}$

Moment Distribution Example from "ANALYSIS AND BEHAVIOR OF STRUCTURES"

Verify All Elements are Modeled

- 3 story structure
- Masonry stair and elevator shaft walls
- Steel floor framing and columns

- Semi-rigid diaphragms at Level 1 and 2
- Flexible diaphragm at roof

Verify All Elements are Modeled

Steel Lateral System

- Steel beams, roof joists, and columns
- 11 Moment Frames in the N-S direction

Verify All Elements are Modeled

Forgotten Elements - how will they affect behavior?

Masonry System

- Stairs: 8" masonry walls with #5@24" o.c. vertical reinf
- Elevators: 12" walls with #5@24" o.c. vertical reinforcement
- Capable of carrying all lateral load without steel moment frames

Moving Away From Simplicity

- Previously with limited software, slower computers, or no software and computers, we simplified reality with conservative "approximations"
- Large difference between all "lateral" and "gravity/lateral" member modeling
 - How can members be ignored from lateral system?

Understand Software Capability/Limitations of Analysis

- Beam, Column, and Wall Properties
- **Diaphragm** Properties
- •

Diaphragm connection to lateral support system

- Member properties boundary conditions
 - Strong axis pinned or moment connected
 - Maybe semi-rigid?
 - Weak axis and torsion being checked?
 - Concrete
 - Does FEA consider cracked sections?

- Member properties boundary conditions
 - End zone
 - Rigid end offsets
 - Pinned, fixed or spring support?

- Member properties type of finite element
 - Wide concrete beam
 - When should it be considered a plate instead of line element (4 node instead of 2)?
 - Large "deep column" or 'short wall"
 - Remember, "columns" are 1-D finite elements that connect to plates at a single point

concrete cracked sections stiffness?

weak axis and strong axis commonly fixed, do connections and member check for weak axis?

concrete cracked sections stiffness?

rigid end zones, and offsets can make a big difference - rigid link between the end of the member and end node

Walls

- Wall properties, boundary conditions
 - Is there weak axis bending? torsional?
 - Horizontal and vertical bending? both being checked?
 - Does FEA consider cracked sections
 - Wall node releases

Walls

- Wall modeling

 - "True" long walls vs. short segments
 - Gap or no gap
 - Openings ullet

Masonry wall stiffness based on partial or full grout

out-of-plane connected?

do connections and wall check for out of plane moment (vertical bending)?

Walls

compressible or fixed?

in-plane concrete cracked sections stiffness? plate torsion fixed?

horizontal bending?

is torsion and norizontal bending being designed?

out-of-plane concrete cracked sections stiffness?

Effective Stiffness for Modeling Reinforced Concrete Structures By John-Michael Wong, Ph.D., S.E., Angie Sommer, S.E., Katy Briggs, S.E. and Cenk Ergin, P.E. STRUCTURE MAGAZINE in <u>Articles</u>, <u>Structural Analysis</u>, January 2017

		Property Modifier for Modeling Elements												
	Elements	ACI 318-11 10.10.4.1 ACI 318-14 6.6.3.1.1	ASCE 41-13 Table 10-5	PEER TBI Guidelines Service Level	LATBSDC MCE-Level Non Linear Models (2014)	LATBSDC Servicability & Wind (2014)	FEMA 356 Table 6-5	NZS 3101: Part 2:2006 Ultimate Limit State (fy=300Mpa)	NZS 3101: Part 2:2006 Servicability Limit State (µ=3) (Note 3)	CSA A23.3-14	EuroCode	TS 500-2000	Paulay & Priestley (1992)	Pri Ko
Beams	Conventional Beams (L/H > 4)	0.35Ig	0.30Ig	0.50Ig	0.35Ig	0.70Ig	0.50Ig	0.40Ig (rectangular) 0.35Ig (T and L beams)	0.70Ig (rectangular) 0.60Ig (T and L beams)	0.35Ig	0.50Ig		0.40Ig	0.
	Prestressed Beams (L/H > 4)	n/a	1.00Ig	1.00Ig	n/a	n/a	1.00Ig	n/a	n/a			0.40Ig	n/a	
	Coupling Beams (L/H ≤ 4)		n/a	n/a	0.20Ig	0.30Ig	n/a	0.60Ig (diagonally reinforced)	0.75Ig				(9)	
Columns	Columns - Pu ≥ 0.5Agfc		0.70Ig .70Ig 0.30Ig		0.701a	0.90Ig	0.70Ig	0.80Ig	1.00Ig	0.70Ig	0.50Ig	0.80Ia (Noto 6)	0.80Ig	
	Columns - Pu ≤ 0.3Agfc	0.701a		0.50Ig	0.701g			0.55Ig	0.80Ig			0.001g (1000 0)	0.60Ig	<u> </u>
	Columns - Pu ≤ 0.1Agfc	0.701g			n/a		0.50Ig	0.40Ig	0.70Ig			0.40Ig	(0)	°.
	Columns - tension			n/a n/a	Iva		n/a	n/a			n/a	()		
Walls (4)	Walls - uncracked	0.70Ig	n/a 0.50Ig	n/a 0.75Ig 0.50Ig	n/a	n/a	0.80Ig	n/a	n/a	0.7Ig	0.50Ig	n/a	(0)	
	Walls - cracked	0.35Ig			0.751g	1.00Ec (1)	0.75Ig	0.50Ig	0.32Ig-0.48Ig	0.50Ig-0.70Ig	0.35Ig	0.50Ig	0.40Ig - 0.80Ig (Note 6)	(5)
	Walls - shear	n/a	0.40EcAw (10	n/a	0.50Ag	1.00Ag	n/a	n/a	n/a	n/a	n/a	n/a	(9)	
Slabs	Conventional flat plates and flat slabs	0.25Ig See 10.4.4.2	See 10.4.4.2 See 10.4.4.2	0.501a 0.2	0.251g	0.5010	1/2	n/a	n/a	0.251a	0.501a	n/a	(9)	
	Post tensioned flat plates and flat slabs	n/a		n/a See 10.4.4.2	0.501g	0,2.54g	0,501g	liva	iva	Ira	0.251g	0,501g	n/a	n/a
	In-plane Shear	n/a	n/a	n/a	0.25Ag	0.80Ag	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
Notes		(5)	(2)	(2)	(2)				(3)				(7)	
														_

Mixing Materials ... in the same frame

Steel Frames Connected to Perforated Masonry Shear Walls

Post-Tensioned Concrete Frame with Masonry Walls

Multiple Material Lateral: Wood -Masonry - Steel

QA/QC for Member Results

QA/QC

- - Examples
 - Torsional load in wide flange?
 - Horizontal bending in walls?
 - Axial forces in connections?
 - Diaphragm forces in floors?

• What are residual forces/stresses?

QA/QC

- ullet
- certain threshold to ignore?

Do you have a way to check for unaccounted for residual forces/stresses? Or do you have a means to make sure the magnitude of the load is below a

VIEW THE DEFLECTED SHAPE - ANIMATE

QA/QC

QA/QC

- Check drift inter-story and overall drifts
- Check the animated shapes as well
 - tells a story of the buildings response

Windows 10	■ 🗣 🖣 🗘 👭 🕼 🗍 😳 🔽 🛜 Thu Oct 1 1:45 PM ■ 🕴 🕞 🖉 🗒 Ф 🖬 -	Q :≡ ⊡ 4 ‡ ⊡ × Direct:
Model Display Options Jarris Members Pates Panels Solds Loads Deflection Mac Show Deflected Shape Load Combination (pick from ist a)(bytom) High High High Magnification Pactor: 200 Immater This Deflected Shape Nonber of Animator Frames: 7 Combination To Use For Results Display 15: IBC 164 (a)(b)	Example of the second s	I Grid Rules Ies Is Is Is Is Is Is Is Is Is Is Is Is Is
Mac\Home\Dow 👔 15131 biltmore gar 🆪 RAM Frame - [1513	3D R/SA-3D - [Z:\Box S へ 打 40) 早	1:45 PM 10/1/2015

Project Manager	1 ∰ 1 = > ∠ % 1	16-13E+Lr »-Z	Create Report	. VID Quick Views VIDSA
Results Filter C	ut	Movie Player - Vis	ualAnalysis Movie Animation	
E Show or Hide	1	File Movie Help		
Members	X Shown	1		
Plates	X Shown	1		
Nodes	Shown	1		
Areas	Shown			
E Results Display		-		
Analysis Type	First Order	ī		A STATE OF THE OWNER
Displaced	X Yes	4		JE TON
Factor	0.2000	1		ATT
Undisplaced	X Yes	-		f + t + h
Member Results	No results	ī		1111.0
Graphics	Colors	Ŧ.		A strate
Plate Results	Sigma x	ī		A 100 4 41
Plane	Mid-plane •	ī		17 7 8 411-1
Legend	X Yes	-		the the start the
Reactions	Hidden	-		the state of the second
Node Displacements	Hidden			Section of the second
Area Side Results	None	ī	المحقور	the character to a
H Member Details		-	And the second s	
Plate Details				1-1-2 1 2 T. A.
H Node Details				
E Window Options				Charles 1 Th
Title	Hidden	1		
Axes	Shown	1		
Picture View	No No	1		
Highlight Report	No No	1		
Fly-by Tips	O Off	1		
Resu Yau can view moment dia type optio	It View Tips grams on a frame using the res in in the Filter tab.	ult		

Windows 10				

1:0

Verify design checks

<u>Never</u> go from analysis to design check without validating results first

- Understand software capability/limitations of design checks
 - Note: (obvious) not all programs run the same checks
- start with simple models to understand design checks
 - Note: (obvious) reading the manual is imperative
- be sure design check is comparing the right analysis results against member capabilities

Examples: Floor Vibration Calculations

- structural steel software review
 - all these programs do floor vibration checks
 - do they agree with your hand calcs
 - what to do when things get more complicated

Dynamic Analysis for Steel Floor Vibrations Simple Software Solution

	٥	D	0	D	_	-
	A	В	C	D	E	F
1	-					
2	-			XX	XX	-
3	-			0000 0	000.00	-
4						
5	Floor Vi	brations	- Due to	Human A	Activity	
6						
7	Chapter 4	<u>- Design f</u>	for Walking	<u>Excitation</u>	<u>1</u>	
8						
9	Design Cri	<u>teria</u>				
10	Concrete S	Slab and D	eck Propert	ies		
11	Concrete T	hickness				
12	Deck, t _D	ECK =	2.00 in		f _C =	4000
13	Concrete	e, t _{CONC} =	3.25 in		γ _{CONC} =	145.0
14	Overall, t	TOTAL =	5.25 in		E _{CONC} =	: 3492
15	Normal Weig	ht Concrete			E _{CONC} (dynami
16						
17	Steel Sect	ion Propen	ties			
18	Steel Bear	n Section	W18x50		F _Y =	50 ksi
19	Steel Girde	er Section	W24x55		E _{STEEL} =	: 29000
20						
21	-					
22		€	-			Tota
23		~	-			
24					Wi	dth of
25						No. of
26			Τ			T
27	. '	ˆ ^ =		1 1	-	
28						
29						
30	. 0. ₽	0. ₽				
31	: 45	= 45				
32	or =	ay :				
33	음	m				

Dynamic Analysis for Steel Floor Vibrations Simple Software Solution

4	А	В	С	D	E	F	G	H		J		K	L	М
8	Combined I	Mode Prop	<u>perties</u>											
9			lf L _G is les	s than B _J , f	the combin	ed mode is	restricted	and the sys	stem is eff	ectively :	stiffene	d.		
0			$\Delta_{G} = (L_{C}$	₃ / Β _J) * Δ _G '	0.186 in									
1			Otherwise											
2			$\Delta_{G} = \Delta_{G}$	_G ' =	N/A									
3														
4			Floor Fund	damental Fi	requency									
5			f _N = 0.18 *	* √(g / (Δ _J -	+ Δ _G)) =	3.49 Hz								
6														
7			Effective F	Panel Mode	Panel Wei	<u>ght</u>								
8			$W = \Delta_J / ($	$(\Delta_J + \Delta_G)^*$	$W_{\rm J} + \Delta_{\rm G} /$	$(\Delta_G + \Delta_J)$	* W _G =	124.0 k						
9			Δ _J / (Δ _J	$+ \Delta_G $) * W	J =	111.70 k								
)0			Δ _G / (Δ ₀	G + Δ _J) * W	/ _G =	12.29 k								
)1														
)2			Indicate th	ne appropria	ate occupar	ncy by selec	ting from	the categor	es below:				1	
)3			Offices, Res	sidences, and	Churches wi	th non-structu	ral compone	ents and furnis	hings					
)4														
)5			Use the fo	llowing Par	ameters fro	<u>om Table 4.1</u>	<u> </u>							
)6			Constar	nt Force, Po) =	65.0 lb								
)7			Dampin	g Ratio, β =	:	0.03								
8			Accelera	ation Limit,	a ₀ /g =	0.50% of g								
)9														
10			Floor Fund	damental N	atural Freq	uency								
11			a _P /g = F	²₀ " exp(-0.	.35 " T _N) / (þ., A.A. (
12				L D	- 1-	0.440/ -6 -	_	01/ -0.5	v _ r _					
13			individua	u beam	a _B /g =	U.41% OT Q	1	UN, <0.55	∞ or g					
14 1 <i>E</i>			او او دار او دو ا	Circles-	o /-	0.000 -1-	_		V of a					
ci Ci			maividua	<u>ii Giraer</u>	a _G /g =	U.20% OT Q	1	Un, <0.3	∞ or g					
10 17			Combine	d Danal	a_la -	0.50%		NG 50.59	/ of a					
			<u>compine</u>	<u>u railei</u>	ap/y =	0.52% 01 0	9	NO, 20.0	[™] UI G					

Dynamic Analysis for Steel Floor Vibrations Floorvibe

印 FloorVibe Version 2.02 : untitled		a second se
<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp		
□ ☞ 🖬 🏠 🖸 🚭		
Input Data		
Project ID: model for dynamic analysis Project #: Bay ID: 4-floor: 1-2 , B-C By: USC Units	Girder Span: 30.00 ft Beam Spans:	Evaluate
Criterion Walking -	Girders/Walls:	Report
Occupancy: Paper Office 👻	Left: W24X55	Print
Acceleration Limit: 0.50 % of g		
	Beam: W18X50	Advice
	3 spaces at 120.000 in	
Loadings: Dead: <u>4.00</u> psf	Floor Width: 240.00 ft Floor Length: 45.00 ft	Floor Length
Collateral: 0.00 psf Damping Ratio: 0.030	Joist Extended Bottom Chords Girder Continuity	Evaluation: Combined mode a _p /g= 0.51 % > 0.50 % The system DOES NOT SATISFY THE CRITERION.
Concrete:	Mezzanine Beem Perelletto Open Side	Beam Frequency 3.84 Hz
Total Depth: 5.250 in fc: 4.00 ksi	Left Girder Parallel to Open Side	Right Girder Frequency 8.19 Hz
Weight: 145 pcf Deck Height: 2.000 in	 Summary Report/Printout Complete Report/Printout 	Bay Frequency 3.48 Hz
can be us	ed as a stanc used fro	l-alone program, or can be m RAM Steel
Dight Circler: W24X55 Span - 30.00 ft		

Dynamic Analysis for Steel Floor Vibrations RISA Floor

111 R	ISAFloo	r - [C:\R	USA\un	titled.rfl]											
File	Edit	View	Insert	Modify	/ Sp	reads	neets	Solve	e Resu	ults	Tools	Window	Hel	р	
D	i 🔁	E _B	3	50		in mu			₩	₽	1	₹ 🖩	1	LC =	
ậţ -		#	3					D	etail Re	epor	t for Cu	ırrent Iter	n		
	11 FI	oor Plai	n 1												
	li l	n /	' 1	<u>4</u> ET		31 🛛] #	B. 🕴	X		1				
							_								_
	1	Х													
		yZ	2h			~				1			~		
			U				2)			C	3		- (-	4)	
		В) 1 26	kW24X	5 (10) <u>26k</u>	26	kW24X4	55 (10)	26k	26kW	24X55 (10) <u>26k</u>	26kW24	XF
		C	<u>ال</u> ة (24K	24k	24k		24K	24k	24k	24k	2 4	24k	24K	
										1	1) Beam	Vibration	<		
			ŧ	6	6	6		6	6		II Dean				
			5 9 7	1.5	0,0	2 <u>2</u>	9	1.5	1.5			1: Floor F	'lan 1		
			تا <mark>لا</mark>	585	-22 C	5 Å).	SS (SS 1		◀ ▶	Bean	۱	lj[in]] [
			M	M	M	- X		X	×.		20	M20	1	2756.319	
										_	21	M21	4	4239.071	\perp
			<u> </u>	~	~	~		~	~	_	22	M22		4239.071	1
		\cap	÷ 26	5kw24X	557))26R	26	kw24X5	55(0)	2 -	23	M23		2756.319	+
		Ć	- <u>u</u> -							1_	24	M24		4239.071	+
										_	25		6	2522.104	+
										-	20	PUR2	7	2700.319	+
										-	27		0 1	2700.019	+
										-	20	PUR2	0 /	2756 210	+
										-	29	PUR3	0	2756 319	+
										-	31	PUR3	1	2756 319	+
										-	32	PUR3	2	2756.319	+
										-	32	PUR3	3	2756 319	+
										-	34	PUR3	4	2756.319	+
											35	PUR3	5	2756.319	
											36	PUR3	6 3	2756.319	+
											37	PUR3	7	2756.319	\top
											38	PUR3	8 :	2756.319	\top
											39	PUR3	9	2756.319	Τ
											40	PUR4	0	2756.319	\top
											41	PUR4	1	2756.319	

				a constraint of the	-	-				
ê 🛛 🛃	DR	2								
		.								
			\frown		\frown		\frown		\frown	
(5)		(6)		(7)		(8)		(9)	
5 (10)26	k 26kW2/	1X55 (10)2	6k 26kW2	4X55 (10)2	26k 26kW	24X55 (10)	26k 26kV	V24X55 (10)26k	
¥	₹Î ₹I	¥	축 축	4¥	· 북 · 북	¥	₹	축 축	ъ	
		[10]	0 0	0	0 0		~ 0			
-										
)elta il	fi[H7]	Wifk	Iofin^41	Delta d	fa[Hz]	Walkl	fn[Hz]	WIRI	%a	1
773	4 021	187 757	ig[iii 4]	Dona g	19[112]	TT G[N]	4 021	187 757	003	•
166	8.67	66 122					8.67	66 122	002	
.166	8.67	66.122					8.67	66.122	.002	
.773	4.021	187,757					4.021	187.757	.003	
.166	8.67	66.122					8.67	66.122	.002	
.532	4.847	177.366					4.847	177.366	.002	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	
.773	4.021	187.757	4239.071	.174	7.206	64.325	3.633	165.081	.368	-
										•

Develop Your Checklist

Design features vary between programs, know what the differences are.

Affiliated Program	TEKLA family	O A M Association						
		note tarminy	RISA family	CSI family	SCIA family	S-FRAME family	Feature Importance	Must Haye Feature
Comparison chart - Full Building Program	TEKLA BUILDING DESIGNER	RAM STEEL RAM FRAME	RISA FLOOR RISA 3D	ETABS	SCIA Engineer	S-FF AME		
Modeling								
Easy GUI	¥	×		0	0	- 0	*****	•
Model in 2D	0	a	4	¥	<i></i>	0	* */* • •	e'
Model in 3D	0			<i></i>	S.		*/* * * *	•
Integration with REVIT	<i>x</i>		s.	<i>s</i>	a		****	•
Model/Analyze/Design in one program	-	0	1	*	1		*** • •	•
Complex modeling							****	• /
Loading	fam	ilv	Feat	ure	Must	Have		
Surface		,					* * * * *	<i></i>
Variable	-		Import	ance	Feat	ure	* * * * •	1
Line	×						****	11
Variable	~						** • • •	/•
Point	1 . m						****	/ @
Dead load	/IE						* * * * *	7
Live load	-						****	
Snow load	·						***/*	•
Wind Load (ASCE 7)	-						****	<i></i>
Wind load (uplift)	-						***/••	•
Wind load (lateral pressure) based on floor coordinates	-	-	+ + +	++			***	•
Wind load (lateral pressure) based on defined exposure		($\hat{\mathbf{r}}$,	****	•
Seismic load		,	~ ~ ~		_ ~		****	1
Determine Dynamic Properties	-			- -			**	•
Dependent on building period calculation	•		~ ~ ~			7	****	•
Custom loads	-		×	~	~		****	•
Custom gravity load combinations	<i>s</i>	0	×	¥	s/	0	****	•
Custom lateral load combinations	x	*	a	a	s/	0	****	•
Design - Steel								
Steel Beam	a	a	a	*	3	0	****	e/
Composite beam	*	4	s/	*	0	0	****	

In Conclusion

- Get to know your software, develop means to verify by hand Get to know the code, and how it's been implemented in each
- software you use
- Always know capabilities, and more importantly limitations Always, always check with hand calculations

Remember software is a tool, your the engineer!

"It is not your business to succeed, but to do right." - C.S. Lewis

Questions?

- Sam@FORSEconsulting.com
- sam@FORSEconsulting.com
- sam@FORS Econsulting.com
- sam@FORSECONSulting.com
 - sam@FORSEconsulting.com

questions?

sam@FORSEconsulting.com

